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ABSTRACT 

Independent component analysis (lCA) is a powerful method 
for blind source separation based on the assumption that 
sources are statistically independent. Though ICA has proven 
useful and has been employed in many applications, complete 
statistical independence can be too restrictive an assumption 
in practice. Additionally, important prior information about 
the data, such as sparsity, is usually available. Sparsity is 
a natural property of the data, a form of diversity, which, if 
incorporated into the ICA model, can relax the independence 
assumption, resulting in an improvement in the overall sepa­
ration performance. In this work, we propose a new variant of 
ICA by entropy bound minimization (ICA-EBM)-a flexible, 
yet parameter-free algorithm-through the direct exploitation 
of sparsity. Using this new SparseICA-EBM algorithm, we 
study the synergy of independence and sparsity through simu­
lations on synthetic as well as functional magnetic resonance 
imaging (fMRI)-like data. 

Index Terms- independent component analysis, spar­
sity, fMRI 

1. INTRODUCTION 

Independent component analysis (ICA) is a data-driven 
method that provides a unique decomposition of a dataset 
solely through the assumption that sources are statistically in­
dependent and has found wide use in a variety of applications. 
Although statistical independence is a natural assumption in 
many cases, there are many practical applications where such 
a strong assumption is unrealistic. Often in these cases, some 
important prior information about the data is available and in­
corporating it into the ICA model will result in better overall 
separation performance. 

A widely used approach for incorporating prior informa­
tion into the ICA framework is through the use of constrained 
independent component analysis (C-ICA) [1], which incor­
porates prior information using equality and inequality con­
straints under a Lagrangian framework. Such prior informa­
tion can be about the task in functional magnetic resonance 
imaging tMRI analysis and can be included as constraints on 
the mixing matrix columns [2-4] or spatial maps [1, 5, 6]. 

While this approach is practical, such constraints have to be in 
an exact functional form, something that is not always avail­
able in practice. Another form of prior information that can be 
considered are natural properties of the data, such as sparsity. 

There are many ways to impose sparsity into the ICA 
model, such as by selecting a density model that favors sparse 
distributions [7, 8] or by using sparsity transformations [9] 
following ICA. Although, selecting the source distribution 
would allow the ICA model to enjoy the desirable large sam­
ple properties of the ML formulation [10, 11], the model 
would be limited to a specific type of sparse distribution [10]. 
Additionally, sparsity transformations are an indirect way 
of imposing sparsity and do not allow direct way to control 
independence versus sparsity. 

The main contribution of this work is the development of 
a new ICA algorithm that takes the sparsity of each individ­
ual source into account. We incorporate sparsity into the ICA 
algorithm, entropy bound minimization (ICA-EBM) [12], by 
introducing a weighting factor to the ICA cost function to bal­
ance the contribution of sparsity for each of the individual 
sources. ICA-EBM is a flexible and parameter-free ICA al­
gorithm that can separate sources from a wide range of distri­
butions. The new SparseICA-EBM algorithm inherits all the 
advantages of ICA-EBM, namely its flexibility, though with 
enhanced performance due to the exploitation of the sparsity 
and allows the user to balance the roles of independence and 
sparsity. 

The remainder of this paper is organized as follows. In 
Section 2, we provide the necessary background on ICA. Sec­
tion 3, provides the mathematical development of SparselCA­
EBM. In Section 4, we demonstrate the effectiveness of 
SpaseICA-EBM through sparse simulated data as well as 
simulated fMRI-like data. The conclusions are presented in 
Section 5. 

2. BACKGROUND 

2.1. Independent Component Analysis 

Let N statistically independent sources s(t) = [SI (t) , ... , S N (t) ]T 
be mixed through an unknown invertible mixing matrix A E 

jRNxN so that we obtain mixtures x(t) = [Xl (t), . .. ) XN(t)]T, 

978-1-5090-4117-6/17/$31.00 ©2017 IEEE 2532 ICASSP2017 



through the linear model 

x(t) = As(t), t = 1, ... , T , 

where t denotes the discrete time index and (.) T the trans­
pose. The goal of ICA is to estimate a demixing matrix 
W E jRNxN to yield maximally independent source esti­
mates y(t) = Wx(t). A natural cost function to achieve 
such a separation is mutual information (MI), which is de­
fined as the Kullback-Leibler (KL)-distance between the joint 
source density and the product of the marginal estimated 
source densities. Therefore, the MI cost function is given by 

N 

JrCA(W) = L H(Yn) - log I det(W) I - H(x) , (1) 
n=l 

where Yn = W J x and the terms H(Yn) and H(x) are the (dif­
ferential) entropy of the source estimates and the mixtures, re­
spectively. Note that the term H(x) is independent ofW and 
can be treated as a constant C. The minimization of the MI 
is equivalent to the maximization of the maximum likelihood 
(ML) cost function, hence, making available all the theoreti­
cal advantages associated with the ML theory [10] for large 
sample sizes. 

It is impractical to try to exploit prior information in (1) as 
it requires either complete knowledge of the demixing matrix 
or of the sources, information that is not usually available. As­
suming that the demixing matrix is orthogonal would loosen 
this strict requirement, but would unecessarily limit the solu­
tion space. Moreover, direct implementation of (1) implies 
that each latent source has the same distribution, which is un­
realistic in many practical applications. All of these issues 
can be avoided by rewriting (1) and its gradient with respect 
to each row of W , W m, m = 1, ... N. Thus, by using this 
decoupling approach [12, 13], the MI cost function can be 
written as 

N 

JrCA(Wm) = L H(Yn)-log I h~wml-Cm, m = 1, ... , N, 
n=l 

(2) 
where h m is a unit vector that is perpendicular to all row vec­
tors of W except Wm and Cm is a constant. The gradient of 
(2) can be written in a decoupled form and is given by 

8JrCA(Wm ) = - E {"'( )} _ ~ 
8 'f' Ym X h T ' Wm mWm 

where ¢ (Ym) = 8 1o~ p(y= ) is called the score function and 
Ym 

the probability density function (PDF) of the mth estimated 
source, P(Ym), can be adaptively determined for each esti­
mated source independently. 

3. MATHEMATICAL DEVELOPMENT AND 
IMPLEMENTATION 

The formal definition for sparsity is given through the £0 norm 
and is defined as the number of non-zero coefficients from a 

vector Y E jRT 

IIYllo = #{Yi i= 0i j = 1, ... T}. (3) 

Although the incorporation of (3) into the ICA framework is a 
direct way to impose sparsity, the £0 norm is computationally 
intractable. Instead, the £1 norm, defined as the sum of the 
absolute values of a vector's coefficients, serves as a surro­
gate sparsity regularizer of the £0 norm in many optimization 
problems [14-16]. We can promote the synergy between in­
dependence and sparsity through the addition of the £1 regu­
larization term to (2), which we expect to improve separation 
performance when the underlying sources are truly sparse. 

The proposed decoupled sparsity promoting ICA cost 
function is thus given by 

where f(Ym) = II Ym l1 1 is the regularization term and Am 
is called the sparsity parameter. The £1 norm is a non­
differentiable function, so it is replaced by the the sum of 
multi-quadratic functions [17], given by 

where E is the smoothing parameter. Therefore, the proposed 
gradient can be written as 

T 
_ 8JrCA (wm ) + ' I' """"' Ym, 
- Am 1m ~ x. 

8wm <-+0 Jy2 + E t =l m, 

Due to its ability to maximize independence in an efficient 
manner through the use of four measuring functions favoring 
bimodal, symmetric or skewed, heavy-tailed or not heavy­
tailed distributions [12], ICA-EBM serves as the algorithm 
for the direct integration of (4). The new SparseICA-EBM 
not only provides flexible density matching but also yields 
solutions with variable levels of sparsity. 

4. EXPERIMENTAL RESULTS 

We demonstrate the performance of SparseICA-EBM (4), 
in terms of its separation power, using simulated sparse 
sources as well as simulated tMRI-like data. We compare the 
SparseICA-EBM algorithm with the original ICA-EBM algo­
rithm. Additionally, due to its popularity in many applications 
including fMRI analysis, we also compare SparseICA-EBM 
with two implementations of the Infomax algorithm [7]. 
One version is based on the natural gradient optimization 
framework (Infomax-NG) and the other one is based on a 
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quasi-Newton technique Broyden, Fletcher, Goldfarb, and 
Shan no (BFGS) [18], which we call Infomax-BFGS. The 
hardware used in the computational studies is part of the 
UMBC High Performance Computing Facility (HPCF), for 
more information see hpcf.umbc.edu. 

4.1. Simulated Sparse Sources 

For the first set of experiments, we generate 20 simulated 
sources, each of which is distributed according to a general­
ized Gaussian distribution (GGD) with sample size T = 103 . 

The PDF of each source is given by [19] 

( X) 2fJ 
p(x;(3 ,a) = 1]exp - 2a ' x E IR 

where 1] = 1 fJ . The shape parameter, (3, controls the 
2 2J3" r( -k )a 

peakedness and spread of the distribution as well as its spar­
sity. If (3 < 1, the distribution is more peaky than the Gaus­
sian with heavier tails, and if (3 > 1, it is less peaky with 
lighter tails. Thus, as (3 -7 0 the distribution becomes more 
sparse. 

To verify the sparse nature of the sources used for the first 
set of the experiments, we generate 20 sources with sample 
size T = 104 and shape parameter (3 from the range [0.1,0.5] 
with a step size of 0.05. For each specific source, we measure 
the sparsity level using the Gini Index as described in [20] 
and average over the sources that correspond to a specific (3. 
In Fig. 1, we see that as we increase (3, sources become less 
sparse. 

0.1 0 .2 0 .3 0 .4 
Shape Parameter ~ 

0.5 

Fig. 1. Average Gini Index as a function of the shape param­
eter, (3. The Gini Index is normalized and 1 corresponds to 
very sparse sources while 0 to dense sources. 

To evaluate the performance of the algorithms, we use 
the average-interference-to-signal ratio (ISR) as in [13]. For 
SparseICA-EBM, the algorithm parameters are A = 104 and 
E = 10- 2 and are determined based on a grid search selection. 
All results are the average of 300 independent runs. 

In Fig. 2, we display the normalized ISR as a function of 
(3. We observe that for small values of (3, i.e. , highly sparse 
case, SparseICA-EBM exhibits better performance. On the 
other hand, ICA-EBM starts performing better than the other 
algorithms as we increase (3, i.e., decrease sparsity. It is worth 
mentioning that Infomax-NG often fails to converge as (3 in­
creases revealing its poor performance under this experimen-

tal setup. On the other hand, Infomax-BFGS shows reason­
able performance especially for small values of (3. 

10 -1 ~--~-~----=r:lt:;=::::;'==='=;~51 
" -+ -SparseICA- EBM 

)f - )( - Infomax- NG 
-*- Infomax- BFGS 
-e- ICA- EBM 

10-5L..L __ ~_~--~---'------' 
0.1 0.2 0.3 0.4 0.5 

Shape Parameter ~ 

Fig. 2. Performance comparison of four ICA algorithms in 
terms of the normalized average ISR as a function of shape 
parameter, (3, for 20 sources with T = 103 . Each point is the 
result of 300 independent runs. 

In Fig. 3, we display the normalized ISR as a function of 
the sample size. To study the case where sources are very 
sparse we generate all sources using (3 = 0.1. As the sample 
size increases, SparseICA-EBM and ICA-EBM perform bet­
ter than the other two algorithms, since the large sample size 
enables an accurate approximation of the differential entropy 
of the estimated sources. When the sample size becomes 
greater than 103 , Infomax-BFGS starts providing highly inac­
curate results, due to algorithmic issues in the approximation 
of the inverse of the Hessian matrix. 

0::: 
C/)_ 10-2 ". X ...L '"' - - -E>- " ' , "'" 
"0 * --0., ' '¥. ,,* 
Q) - . .. ~--
.~ . . ... '"G""" c' " 
Iii - ~ .:t: --*, ''0 " 
E 10-4 '-..... --_ ~---I( 
Zo ,-----;----,,----,-,-,-c:=--='" " + -e.. -+ -SparselCA EBM - _ '_ 

- )( - Infomax- NG - _ '0 
-*- Infomax- BFGS +- - _ -..L 

-6 -e- ICA- EBM ... 

10 2 
10 103 

Sample Size 
Fig. 3. Performance comparison of four ICA algorithms in 
terms of the normalized average ISR as a function of sample 
size, T, for 20 sources with (3 = 0.1. Each point is the result 
of 300 independent runs. 

Finally, in Fig. 4, we display the normalized ISR as a func­
tion of the number of sources where for each source T = 103 

and (3 = 0.1. It is clear from Fig. 4 that SparseICA-EBM 
shows the best performance. Infomax-BFGS performs well 
when the number of sources is small since the optimization 
procedure is performed in a low dimensional space. This re­
veals the benefit of employing the decoupling approach, since 
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the reduction to a set of vector optimization problems avoids 
over-complicated surfaces for the cost function. 
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Fig. 4. Performance comparison of four ICA algorithms in 
terms of the normalized average ISR as a function of number 
of sources, N, with T = 103 and f3 = 0.1. Each point is the 
result of 300 independent runs. 

4.2. Simulated fMRI-like Data 

For the second set of experiments, we used simulated fMRI­
like sources at different contrast-to-noise ratio (CNR) levels. 
Estimated spatial fMRI sources tend to have sparse distribu­
tions [21], leading to the popularity of sparsity favoring algo­
rithms such as Infomax. 

For our experiment, we generate 20 spatial maps using 
10 subjects. Each spatial mask is a 100 x 100 image with a 
baseline intensity of 800. The length of the experiment is 260 
samples. Rician noise is added to each dataset at specified 
CNR value. The parameters for SparseICA-EBM, A = 104 

and E = 3.8, are determined based on a grid search selection 
method performed on noiseless data. 

The first step in processing the fMRI like-data consists 
of the application of principal component analysis to each 
dataset individually. Since 20 sources are generated for each 
dataset, the dimension of each dataset is reduced to 20. Af­
ter dimension reduction, we apply the ICA algorithms to 
each dataset, such that we are seeking spatially independent 
components that correspond to spatial functional connectivity 
maps shown in Fig. 5. After obtaining the estimated demixing 
matrices from each of the algorithms and for each dataset, we 
estimate the independent components and, together with their 
associated dernixing vectors, pair them with the true sources. 
In the case where more than one estimated component is 
paired with a single true source, we use Bertsekas algorithm 
[22] to find the best assignment. To evaluate the performance 
of the ICA algorithms, we use the average absolute value of 
the correlation between the true and the estimated sources. 

From Fig. 6, we observe that SparseICA-EBM provides 
significantly improved performance compared with ICA­
EBM for high CNR values, due to the effective incorporation 
of sparsity into the ICA model. In contrast to the first set of 
experiments, both Infomax-NG and Infomax-BFGS provide 

Fig. 5. Simulated fMRI-like components. Note that each 
color indicates a different component. 

similar performance to SparseICA-EBM. Both implemen­
tations of Infomax use a fixed model for the underlying 
distribution of the sources, resulting in high performance in 
this case, since SimTB sources that we have used closely 
match the assumed source model. However, their separation 
performance has been shown to suffer when the density of 
the data significantly deviates from the assumed underlying 
model [12,23]. 
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CNR Level 
Fig. 6. Spatial correlation between the true and the estimated 
sources as a function of the CNR level. Each point is the result 
of 128 independent runs. 

5. CONCLUSION 

Both sparsity and independence have proven useful in a va­
riety of applications, motivating the development of an algo­
rithm that can effectively balance the contributions of these 
two forms of diversity. In this paper, we propose a new ICA 
algorithm, SparseICA-EBM, that inherits all the advantages 
of ICA-EBM, namely its flexibility, though with enhanced 
performance due to the exploitation of sparsity, making it an 
attractive ICA algorithm for applications where prior infor­
mation about the sparsity of the sources is available. Our 
work motivates several interesting directions for further re­
search, such as the development of automated techniques for 
parameter selection when the ground truth is not available. 
Additionally, adaptively updating Am and E for each source 
would significantly increase the separation performance when 
sources have different levels of sparsity. 
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